Chemical and Vibrational Nonequilibrium Hypersonic Viscous Flow around an Axisymmetric Blunt Body
نویسنده
چکیده
Abstract—Hypersonic flows around spatial vehicles during their reentry phase in planetary atmospheres are characterized by intense aerothermodynamics phenomena. The aim of this work is to analyze high temperature flows around an axisymmetric blunt body taking into account chemical and vibrational non-equilibrium for air mixture species and the no slip condition at the wall. For this purpose, the Navier-Stokes equations system is resolved by the finite volume methodology to determine the flow parameters around the axisymmetric blunt body especially at the stagnation point and in the boundary layer along the wall of the blunt body. The code allows the capture of shock wave before a blunt body placed in hypersonic free stream. The numerical technique uses the Flux Vector Splitting method of Van Leer. CFL coefficient and mesh size level are selected to ensure the numerical convergence.
منابع مشابه
Approximate Viscous Shock-Layer Analysis of Axisymmetric Bodies in Perfect Gas Hypersonic Flow
In this paper, an approximate axisymmetric method is developed which can reliably calculate fully viscous hypersonic flow over blunt-nosed bodies. In this method, a Maslen’s second-order pressure expression is used instead of the normal momentum equation. The combination of Maslen’s second-order pressure expression and viscous shock layer equations is developed to accurately and efficiently com...
متن کاملPhysico-chemical State of the Air at the Stagnation Point during the Atmospheric Reentry of a Spacecraft
Hypersonic flows around spatial vehicles during their reentry phase in planetary atmospheres are characterized by intense aerothermal phenomena. The aim of this work is to analyze high temperature flows around an axisymmetric blunt body taking into account chemical and vibrational non-equilibrium for air mixture species. For this purpose, a finite volume methodology is employed to determine the...
متن کاملLaminar and Turbulent Aero Heating Predictions over Blunt Body in Hypersonic Flow
In the present work, an engineering method is developed to predict laminar and turbulent heating-rate solutions for blunt reentry spacecraft at hypersonic conditions. The calculation of aerodynamic heating around blunt bodies requires alternative solution of inviscid flow field around the hypersonic bodies. In this paper, the procedure is of an inverse nature, that is, a shock wave is assumed a...
متن کاملNonequilibrium and Rarefaction Effects in the Hypersonic Multicomponent Viscous Shock Layers
The effects of rarefaction and nonequilibrium processes on hypersonic rarefied-gas flows over blunt bodies have been studied by the Direct Simulation Monte-Carlo technique (DSMC) and by solving the full Navier-Stokes equations and the equations of a thin viscous shock layer (TVSL) under the conditions of wind-tunnel experiments and hypersonic-vehicle flights at altitudes from 60 to 110 km. The ...
متن کاملNonequilibrium and Rarefaction Effects in Hypersonic Multicomponent Viscous Shock Layers
Planetary exploration programs [1] stimulate new studies in hypersonic aerothermodynamics. The design of hypersonic vehicles has brought renewed interests in the heat protecting methods [2], [3], [4]. To analyze the structure of nonequilibrium airflow near a blunt body, a model of a thin viscous shock layer (TVSL) (an approximation of the Navier-Stokes equations) was developed [5]-[12]. In this...
متن کامل